R&D Project Review of Food Industry Energy Research (FIER) Program UC Davis October 26, 2004

Infrared Drying of Rice to Improve Energy Efficiency and Disinfestation

Zhongli Pan

Objectives

- ➤ Evaluate the performance of catalytic flameless gas-fired infrared dryer (CFGIR) and electric infrared dryer for rice and onion drying
- Evaluate the effectiveness of infrared heating for rice disinfestation

Outlines

- Principles of infrared radiation
- Performance of catalytic flameless gasfired infrared dryer (CFGIR) for rice and onion drying
- Performance of electric infrared dryer for rice and onion drying
- Other potential applications of infrared
 - ➤ Blanching and dehydration of fruits and vegetables

Infrared Technology

- Infrared radiant heat transfer is often more efficient than convective heat transfer
- Produce virtually no volatile organic compounds (VOC), carbon monoxide (CO), and nitrogen oxides (NO_X)
- Limited uses of infrared radiation in food and agricultural processing

Principles of Infrared

Infrared radiation – Electromagnetic wave

Electromagnetic spectrum

Principles of Infrared

Peak wavelengths and temperatures of a blackbody

	Wavelength (µm)	Temperature	
Near infrared (NIR)	0.8 – 2	3623 -1448 K	3350 -1175°C
Medium infrared (MIR)	2 – 4	1448 – 723 K	1175 - 450°C
Far infrared (FIR)	4 – 100	723 – 28 K	450245°C

Spectrum of Water 水吸收光谱

Infrared Radiation Drying

Heating Methods加热方式

- ❸ Continuous heating 连续加热
- ❷ Intermittent heating 间歇加热
 - ➤ Fixed heating cycle 固定间歇加热
 - ➤ Variable heating cycle 变频间接加热
 - Recirculation fan on
 - Recirculation fan off

Infrared Radiation Drying

Product Temperatures – Continuous & Fixed Cycle Drying

Infrared Radiation Drying

Product Temperatures Under Controlled Condition

Infrared Dryers

Electric vacuum infrared dryer

Catalytic flameless gas-fired infrared (CFGIR) dryer

Rice Drying Rate

Rice Moisture Change

Rice Quality - Head Rice Yield

	Drying Conditions						
	36° C		45° C		54° C		
MC removal							
(%)	Т	NT	Т	NT	Т	NT	
2.5			62.9	62.0	61.1	60.1	
5	61.3	61.6	60.3	56.2	48.9	32.8	
7	58.7	53.5	36.9	27.8	30.2	18.3	

T – TemperingNT – No Tempering

Energy Consumption

Drying Cost and Saving

Energy cost of drying paddy by Gas and Electricity

Initial weight = 1000 kg (1 Ton)

Drying Rice from 24 % to 13% ⇒ need to remove 126.4 kg water ⇒ need 2.64 Therm. or 77.3 kWh

Assume: Cost of natural gas = \$0.60/ Therm

Cost of Electricity = \$0.10 / kW.h

	Natural gas	Electricity	Total cost (\$)	Saving
Current drying method	72%	28%	3.30	
IR drying method	85%	15%	2.51	\$0.79 or 24%

Catalytic
Flameless Gas
Infrared Drier
(CFGIR)

DRYING RATES - 60°C

DRYING RATES - 70°C

DRYING RATES - 80°C

Color Comparison

Electric IR Radiation Drying

Advantage:

Fast drying rate

Disadvantages:

Low loading ratio

Difficult to handle the product

Electric infrared dryer with vacuum

Electric IR Radiation Drying

New electric infrared dryer with vacuum

Infrared Blancher/dryer

Apple samples

Enzymatic (peroxidase) activity of treated with IDB for various times ½" (12.7mm cubes)

•Texture of IDB and Steam Blanched Apple Samples

Pear samples

Enzymatic (peroxidase) activity of treated with IDB for various times ½" (12.7mm cubes)

•Pear samples 热传递

Heating rates of pear slices by IDB and 75° C steam blanching

Carrots

Control 2min 3min 4min

Enzymatic (peroxidase) activity of treated with IDB for various times (15mm in Diameter)

Infrared Dry Banching

• Cut corn (corn kernels)

1min Control

Enzymatic (peroxidase) activity of treated with IDB for various times

• French Fries

Control

3.5min

Enzymatic (peroxidase) activity of treated with IDB for various times

Simultaneous Blanching and Dehydration of Pears

Acknowledgement

James F. Thompson

Sanath Amaratunga

Mike Gabel

Yi Zhu

Xianzhe Zheng

Tara McHugh

Carl Olson

Don Olsen

Paul Singh

Catalytic Drying Technology, LLC

Advanced Light Technology, LLC

CEC

CIFAR

Thank You

Email: zlpan@ucdavis.edu